Forums Coding Corner 4 boards together

Viewing 2 reply threads
  • Author
    Posts
    • #6885
      PBH

      This sketch with remarks should be self explaining. I am available for questions, but most of all I wonder if anyone would have a more efficient coding as I was particularly struggling with the management of the shift registers in the RGB matrix. Every time writing the bytes ‘B00000000’ times 4 works, but just seems not very efficient. Happy with any remarks.
      Kind regards,
      Peter

      /* This sketch is based on shortcircuits.cc basic sketches and uses the Short Circuits
      Motherboard (MB), Digitiser (DI), Sensor array (SE) and RGB matrix (MA) boards.
      It shows time and temperature alternatively every minute (mode1/2 by sw1) and runs through
      time/temp/humidity/lightlevel/noiselevel (modes 1-5) with sw2 and outputs to DI and MA.
      The LEDs show which mode (1-4) is current. In mode 5 (noiselevel) the LEDS display the level.
      The brightness of DI and MA is controlled by the LDR
      Not used: DI Pot and SE card reader
      Attention to the comments in setup() to initialise the RTC
      Most of the sketch is explained by comments. It might not be the most efficient programming, but it works 😉

      Motherboard connections:
      D2 SE DHT
      D3 (PWM) DI SER [SERDI]
      D4 DI CLK [CLKDI]
      D5 (PWM) DI LAT [LATDI]
      D6 (PWM) DI OE and MA OE [OE]
      D7 MA LAT [LATMA]
      D8 MA CLK [CLKMA]
      D9 (PWM) MA SER [SERMA]
      D10 (PWM) SE CS
      D11 (PWM) SE Din
      D12 SE Dout
      D13 SE CLK
      A0 DI Sw1 (can use any pin)
      A1 DI Sw2 (can use any pin)
      A2 SE MIC (needs analog pin)
      A3 SE LDR (needs analog pin)
      A4-5 MB RTC (internally connected)
      */

      // INITIALISATION FOR THE DHT
      #include <DHT_U.h> // includes DHT_U library
      #define DHTPIN 2 // digital pin connected to the DHT sensor
      #define DHTTYPE DHT11 // indicate the sensor type: DHT11 or DHT22
      DHT_Unified dht(DHTPIN, DHTTYPE); // sets the pin and type

      // INITIALISATION FOR THE MOTHERBOARD RTC #1/2
      #include <RTClib.h> // include RTClib library
      RTC_DS1307 rtc; // create an instance of the DS1307

      // INPUT PIN VARIABLES AND INITIALISATION FOR THE DIGITISER
      const int SERDI = 3;
      const int CLKDI = 4;
      const int LATDI = 5;
      const int SERMA = 9;
      const int CLKMA = 8;
      const int LATMA = 7;
      const int OE = 6;
      const int sw1 = A0;
      const int sw2 = A1;

      /* bits in sequence: LED 1,2,3,4, Digit 4,3,2,1 (U5). LED on = 1, Digit on = 0 */
      const int digit[4] = { B00001110,B00001101,B00001011,B00000111 };

      /* digit sequence: G, F, A, B, DP, C, D, E. Check: Digit on = 0 */
      const int number[10] = { B10001000,B11101011,B01001100,B01001001,B00101011,
      B00011001,B00111000,B11001011,B00001000,B00001011};
      int digit0 = digit[0]; // to switch digit0 on
      int digit1 = digit[1]; // to switch digit1 on
      int digit2 = digit[2]; // to switch digit2 on
      int digit3 = digit[3]; // to switch digit3 on

      // INPUT PIN VARIABLES AND INITIALISATION FOR THE SENSOR ARRAY
      const int MIC = A2;
      const int LDR = A3;

      int micMin = 1024; // Sets micMin to 1024 before the readings decrease the number
      int micMax = 0; // Sets micMax to 0 before the readings increase the number
      int micReading = 0; // variable to hold mics raw input value
      int light = 0; // variable to hold light level reading

      // INITIALISATION FOR RGB MATRIX
      //MA MSBFIRST LED Order:
      //B Green1, Green2, Green3, Green4, Blue1, Blue2, Blue3, Blue4
      //B Row1, Row2, Row3, Row4, Red1, Red2, Red3, Red4
      int row11 = B00000000;
      int row12 = B11110000;
      int row21 = B00000000;
      int row22 = B11110000;
      int row31 = B00000000;
      int row32 = B11110000;
      int row41 = B00000000;
      int row42 = B11110000;

      // INITIALISATION FOR MAIN LOOP
      int loopSizeNoise = 50; // to calculate average noiselevel
      int dimVal = 0; // to dim LEDs and digits
      int thousands = 0; // value for digit0
      int hundreds = 0; // value for digit1
      int tens = 0; // value for digit2
      int ones = 0; // value for digit3
      int noiseCounter = 0; // to determine average noiselevel
      int micVal = 0; // to determine average noiselevel
      int mode = 1; // 1:time, 2:temp, 3:humid, 4:light, 5:noiselevel
      int sw1State = 0; // state of button1
      int sw1StateLast = 0; // last state of button 1
      int sw2State = 0; // state of button2
      int sw2StateLast = 0; // last state of button 2
      int digitValue = 0; // value to be displayed
      int secondPrevious = 0; // if value of second (time) changes > …
      int modeSwitchCounter = 0; // to delay automatical mode switches
      int loopWait = 10; // x seconds wait between automatic switch mode 1<->2
      int decimalPoint = 0; // decimal point for digit1
      int letterC = B10011100; // prepares for displaying ‘C’ on digit3 in mode4
      int letterH = B00101010; // prepares for displaying ‘H’ on digit3 in mode5
      int letterL = B10111100; // prepares for displaying ‘L’ on digit0 in mode7
      int takeTemp = 2; // measure temperature every x minutes
      int takeTempPrevious = 0; // to measure temperature just once every takeTemp minutes
      int tempMeasured = 0; // value for MA display
      int tempMeasuredPrevious = 0; // value for MA display
      int counterMA = 0; // for MA sequences
      int counterMA2 = 0; // for MA sequences
      int counterMA3 = 1; // for MA sequences
      int steps = 1; // for MA sequences
      bool interval = true; // to change modes automatically

      //Void Setup – runs once at start
      void setup() {
      // Serial.begin(9600); // Initialise Serial Monitor only for checks
      rtc.begin(); // initialise RTC
      dht.begin(); // initialise DHT sensor

      pinMode(SERDI, OUTPUT); // SERDI (data) pin as output
      pinMode(CLKDI, OUTPUT); // CLK (clock) pin as output
      pinMode(LATDI, OUTPUT); // LATCH pin as output
      pinMode(SERMA, OUTPUT); // SER (data) pin as output
      pinMode(CLKMA, OUTPUT); // CLK (clock) pin as output
      pinMode(LATMA, OUTPUT); // LATCH pin MA as output
      pinMode(OE, OUTPUT); // Output Enable

      analogWrite(OE, 255); // Set brightness minimal (0 = full brightness). Register outputs enabled.

      pinMode(sw1, INPUT); // Switch 1
      pinMode(sw2, INPUT); // Switch 2
      pinMode(LDR, INPUT); // Declaring the LDR pin as an input

      pinMode(13, OUTPUT); // LED on motherboard
      digitalWrite(13,LOW); // set pin 13 (LED) off

      // INITIALISATION FOR THE RTC #2/2
      /*
      To set the time on the RTC to match your computer’s clock, uncomment the next line and upload the code.
      To prevent it resetting to the same time every time you reset the device, add the “//” to the beginning of the line then uplaod the code again.
      The time will then be set and saved even after a reset (with a coin cell present).
      */
      //rtc.adjust(DateTime(__DATE__,__TIME__)); // Set the RTC to Compile Date and Time
      }

      void resetMA() { // Turns all LEDS of RGB matrix off
      row11 = row21 = row31 = row41 = B00000000;
      row12 = row22 = row32 = row42 = B11110000;
      }

      void setMA() {
      digitalWrite(LATMA,LOW); // row1
      shiftOut(SERMA,CLKMA,MSBFIRST,row11);
      shiftOut(SERMA,CLKMA,MSBFIRST,row12);
      digitalWrite(LATMA,HIGH);
      delay(1);
      digitalWrite(LATMA,LOW); // row2
      shiftOut(SERMA,CLKMA,MSBFIRST,row21);
      shiftOut(SERMA,CLKMA,MSBFIRST,row22);
      digitalWrite(LATMA,HIGH);
      delay(1);
      digitalWrite(LATMA,LOW); // row3
      shiftOut(SERMA,CLKMA,MSBFIRST,row31);
      shiftOut(SERMA,CLKMA,MSBFIRST,row32);
      digitalWrite(LATMA,HIGH);
      delay(1);
      digitalWrite(LATMA,LOW); // row4
      shiftOut(SERMA,CLKMA,MSBFIRST,row41);
      shiftOut(SERMA,CLKMA,MSBFIRST,row42);
      digitalWrite(LATMA,HIGH);
      }

      void sequence1(int symbol){ // MA sequence 1
      if(symbol == 1) {
      row11 = B11001100; row12 = B01111100;
      row21 = B11001100; row22 = B10111100;
      row31 = B00110011; row32 = B11010011;
      row41 = B00110011; row42 = B11100011;
      }
      if(symbol == 2) {
      row11 = B01100110; row12 = B01110110;
      row21 = B01100110; row22 = B10110110;
      row31 = B01100110; row32 = B11010110;
      row41 = B01100110; row42 = B11100110;
      }
      if(symbol == 3) {
      row11 = B00110011; row12 = B01110011;
      row21 = B00110011; row22 = B10110011;
      row31 = B11001100; row32 = B11011100;
      row41 = B11001100; row42 = B11101100;
      }
      if(symbol == 4) {
      row11 = B00000000; row12 = B11110000;
      row21 = B11111111; row22 = B10111111;
      row31 = B11111111; row32 = B11011111;
      row41 = B00000000; row42 = B11110000;
      }
      setMA();
      }

      void sequence2(int symbol){ // MA sequence 2
      if(symbol == 1) {
      row11 = B00000000; row12 = B01111111; // blauw binnen, zwart buiten
      row21 = B00000110; row22 = B10111001;
      row31 = B00000110; row32 = B11011001;
      row41 = B00000000; row42 = B11101111;
      }
      if(symbol == 2) {
      row11 = B00001111; row12 = B01110000; // zwart binnen, blauw buiten
      row21 = B00001111; row22 = B10110000;
      row31 = B00001111; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      if(symbol == 3) {
      row11 = B00001111; row12 = B01110000; // rood binnen, zwart buiten
      row21 = B00001001; row22 = B10110110;
      row31 = B00001001; row32 = B11010110;
      row41 = B00001111; row42 = B11100000;
      }
      if(symbol == 4) {
      row11 = B00000000; row12 = B01111111; // zwart binnen, rood buiten
      row21 = B00000000; row22 = B10111111;
      row31 = B00000000; row32 = B11011111;
      row41 = B00000000; row42 = B11101111;
      }
      setMA();
      }

      void sequence3(int symbol){ // MA sequence 3
      if(symbol == 1) {
      row11 = B00000001; row12 = B01111000;
      row21 = B00000000; row22 = B10110000;
      row31 = B00000000; row32 = B11010000;
      row41 = B00001000; row42 = B11100001;
      }
      if(symbol == 2) {
      row11 = B00000000; row12 = B01110100;
      row21 = B00000001; row22 = B10110000;
      row31 = B00001000; row32 = B11010000;
      row41 = B00000000; row42 = B11100010;
      }
      if(symbol == 3) {
      row11 = B00000000; row12 = B01110010;
      row21 = B00001000; row22 = B10110000;
      row31 = B00000001; row32 = B11010000;
      row41 = B00000000; row42 = B11100100;
      }
      if(symbol == 4) {
      row11 = B00001000; row12 = B01110001;
      row21 = B00000000; row22 = B10110000;
      row31 = B00000000; row32 = B11010000;
      row41 = B00000001; row42 = B11101000;
      }
      if(symbol == 5) {
      row11 = B00000100; row12 = B01110000;
      row21 = B00000000; row22 = B10110001;
      row31 = B00000000; row32 = B11011000;
      row41 = B00000010; row42 = B11100000;
      }
      if(symbol == 6) {
      row11 = B00000010; row12 = B01110000;
      row21 = B00000000; row22 = B10111000;
      row31 = B00000000; row32 = B11010001;
      row41 = B00000100; row42 = B11100000;
      }
      setMA();
      }

      void sequence4(int symbol){ // MA sequence 4
      if(symbol == 1) {
      row11 = B10001000; row12 = B01111000;
      row21 = B10001000; row22 = B10111000;
      row31 = B10001000; row32 = B11011000;
      row41 = B10001000; row42 = B11101000;
      }
      if(symbol == 2) {
      row11 = B01000100; row12 = B01110100;
      row21 = B01000100; row22 = B10110100;
      row31 = B01000100; row32 = B11010100;
      row41 = B01000100; row42 = B11100100;
      }
      if(symbol == 3) {
      row11 = B00100010; row12 = B01110010;
      row21 = B00100010; row22 = B10110010;
      row31 = B00100010; row32 = B11010010;
      row41 = B00100010; row42 = B11100010;
      }
      if(symbol == 4) {
      row11 = B00010001; row12 = B01110001;
      row21 = B00010001; row22 = B10110001;
      row31 = B00010001; row32 = B11010001;
      row41 = B00010001; row42 = B11100001;
      }
      if(symbol == 5) {
      row11 = B00000000; row12 = B01111111;
      row21 = B00000000; row22 = B10110000;
      row31 = B00000000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      if(symbol == 6) {
      row11 = B00000000; row12 = B01110000;
      row21 = B11110000; row22 = B10111111;
      row31 = B00000000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      if(symbol == 7) {
      row11 = B00000000; row12 = B01110000;
      row21 = B00000000; row22 = B10110000;
      row31 = B11110000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      if(symbol == 8) {
      row11 = B00000000; row12 = B01110000;
      row21 = B00000000; row22 = B10110000;
      row31 = B00000000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      setMA();
      }

      void tempInMatrix() { // mode 4 values for MA
      if(tempMeasured == tempMeasuredPrevious || tempMeasuredPrevious == 0) { // steady temperature or at start of program
      if(tempMeasured < 170) { // blue
      row11 = B00000000; row12 = B01110000;
      row21 = B00000000; row22 = B10110000;
      row31 = B00000000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(tempMeasured < 230) { // green
      row11 = B00000000; row12 = B01110000;
      row21 = B00000000; row22 = B10110000;
      row31 = B11110000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      else if(tempMeasured < 280) { // yellow
      row11 = B00000000; row12 = B01110000;
      row21 = B11110000; row22 = B10111111;
      row31 = B00000000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      else { // red
      row11 = B00000000; row12 = B01111111;
      row21 = B00000000; row22 = B10110000;
      row31 = B00000000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      }
      else if(tempMeasured > tempMeasuredPrevious) { // increasing temperature
      if(tempMeasured < 170) { // blue
      row11 = B00000001; row12 = B01110000;
      row21 = B00000011; row22 = B10110000;
      row31 = B00000111; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      else if(tempMeasured < 230) { // green
      row11 = B00010000; row12 = B01110000;
      row21 = B00110000; row22 = B10110000;
      row31 = B01110000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      else if(tempMeasured < 280) { // yellow
      row11 = B00010000; row12 = B01110001;
      row21 = B00110000; row22 = B10110011;
      row31 = B01110000; row32 = B11010111;
      row41 = B00000000; row42 = B11100000;
      }
      else { // red
      row11 = B00000000; row12 = B01110001;
      row21 = B00000000; row22 = B10110011;
      row31 = B00000000; row32 = B11010111;
      row41 = B00000000; row42 = B11100000;
      }
      }
      else if(tempMeasured < tempMeasuredPrevious) { // decreasing temperature
      if(tempMeasured < 170) {
      row11 = B00001000; row12 = B01110000;
      row21 = B00001100; row22 = B10110000;
      row31 = B00001110; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      else if(tempMeasured < 230) {
      row11 = B10000000; row12 = B01110000;
      row21 = B11000000; row22 = B10110000;
      row31 = B11100000; row32 = B11010000;
      row41 = B00000000; row42 = B11100000;
      }
      else if(tempMeasured < 280) {
      row11 = B10000000; row12 = B01111000;
      row21 = B11000000; row22 = B10111100;
      row31 = B11100000; row32 = B11011110;
      row41 = B00000000; row42 = B11100000;
      }
      else {
      row11 = B00000000; row12 = B01111000;
      row21 = B00000000; row22 = B10111100;
      row31 = B00000000; row32 = B11011110;
      row41 = B00000000; row42 = B11100000;
      }
      }
      }

      //Void Loop – repeats forever

      void loop() {

      // DIM LIGHTS
      light = analogRead(LDR); // save current LDR value to variable
      dimVal = map(light,0,1024,254,0); // dimming value max 254 means not completely off
      analogWrite(OE,dimVal); // set brightness of digits and LEDs. less light > less brightness

      // STATE OF SWITCHES
      sw1State = digitalRead(sw1);
      sw2State = digitalRead(sw2);
      if(sw1State != sw1StateLast){
      if(sw1State == HIGH){
      mode = 1;
      interval = true;
      }
      resetMA(); // Turns all LEDS of RGB matrix off
      delay(10); // delay to avoid bouncing
      sw1StateLast = sw1State;
      }
      if(sw2State != sw2StateLast){
      if(sw2State == HIGH){
      mode++;
      interval = false;
      if(mode > 5){ // only 5 modes (time/temp/humid/light/noise)
      mode = 1;
      }
      }
      resetMA(); // Turns all LEDS of RGB matrix off
      sw2StateLast = sw2State;
      }

      // EXECUTE MODES
      digit0 = digit[0]; // switching all digits on (again)
      digit1 = digit[1];
      digit2 = digit[2];
      digit3 = digit[3];

      DateTime now = rtc.now(); // get the current time

      if(interval){ // at start of program, or when sw1 is activated
      if(now.second() != secondPrevious){ // every second
      secondPrevious = now.second();
      modeSwitchCounter++;
      if(modeSwitchCounter >= loopWait){ // change mode 1<->2 after loopWait seconds
      if(mode == 1){
      mode = 2;
      }else if(mode == 2){
      mode = 1;
      }
      modeSwitchCounter = 0;
      }
      }
      }

      //PREPARE VALUES/BYTES FOR SENDING TO DI OR MA
      if(mode == 1) { // TIME
      resetMA(); // all MA LEDs turned off
      digitValue = (now.hour() * 100 + now.minute()); // calculate time in 4 digits
      digit0 = digit[0] | B10000000; // turn LED1 on
      if(now.minute() == 0 && now.second() < 10) { // every hour on minute 0 for 10 seconds play sequence1
      counterMA++;
      if(counterMA > 5) { // speed of sequence
      counterMA = 0;
      steps++;
      if(steps > 4) {steps = 1;} // sequence of 4 steps
      }
      sequence1(steps);
      }
      if(now.minute() == 15 && now.second() < 10) { // every hour on minute 15 for 10 seconds play sequence1
      counterMA++;
      if(counterMA > 10) { // speed of sequence
      counterMA = 1;
      steps++;
      if(steps > 4) {steps = 1;}
      }
      sequence2(steps);
      }
      if(now.minute() == 30 && now.second() < 10) { // every hour on minute 30 for 10 seconds play sequence1
      counterMA++;
      counterMA2++;
      if(counterMA > 7) { // speed of sequence
      counterMA = 1;
      if(counterMA2 < 500) {
      steps++;
      if(steps > 6) {steps = 1;} // sequence of 6 steps
      }
      if(counterMA2 >= 500) {
      steps–;
      if(steps < 1) {steps = 6;}
      }
      if(counterMA2 > 1000) {counterMA2 = 0;}
      }
      sequence3(steps);
      }
      if(now.minute() == 45 && now.second() < 10) { // every hour on minute 45 for 10 seconds play sequence1
      counterMA++;
      if(counterMA > 5) { // speed of sequence
      counterMA = 0;
      if(counterMA3 / 2 == 0) {
      if(counterMA2 < 4 && steps < 4) {steps++; counterMA2++;} // vertical lights
      else if(counterMA2 < 7 && steps > 1) {steps–; counterMA2++;}
      else {counterMA2 = 1; steps = 5; counterMA3++;}
      }
      else {
      if(counterMA2 < 4 && steps < 8) {steps++; counterMA2++;} // horizontal lights
      else if(counterMA2 < 7 && steps > 4) {steps–; counterMA2++;}
      else {counterMA2 = 1; steps = 1; counterMA3 = 1;}
      }
      }
      sequence4(steps);
      }
      }
      if(mode == 2) { // TEMP
      sensors_event_t event; // Prepares for the following events
      dht.temperature().getEvent(&event); // Gets the temperature data from the DHT
      digitValue = 100 * event.temperature; // Times 100 as digit4 should show ‘C’ (and digit2 ‘.’)
      digit0 = digit[0] | B01000000; // turn LED2 on
      if(now.minute() % takeTemp == 0 || tempMeasuredPrevious == 0) { // Every takeTemp minutes or at start of program
      if(takeTempPrevious != now.minute()) { // just once per takeTemp minutes
      takeTempPrevious = now.minute();
      tempMeasuredPrevious = tempMeasured; // store previous tempMeasured
      sensors_event_t event; // Prepares for the following events
      dht.temperature().getEvent(&event); // Gets the temperature data from the DHT
      tempMeasured = 10 * event.temperature; // to use decimals too
      }
      }
      tempInMatrix(); // display change of temperature on MA
      }
      if(mode == 3) { // HUMIDITY
      resetMA(); // all MA LEDs turned off
      sensors_event_t event; // Prepares for the following events
      dht.humidity().getEvent(&event); // Gets the relative humidity data from the DHT
      digitValue = 10 * event.relative_humidity; // Times 10 as digit4 should show ‘H’
      digit0 = digit[0] | B00100000; // turn LED3 on
      }
      if(mode == 4) { // LIGHT LEVEL
      resetMA(); // all MA LEDs turned off
      digit0 = digit[0] | B00010000; // turn LED 4 on
      digitValue = map(light,0,1024,5,100); // maps reading to 5-100
      }
      if(mode == 5) { // NOISE LEVEL
      if(noiseCounter < loopSizeNoise) { // continue display without changing values
      noiseCounter++;
      micVal = analogRead(MIC); // read value from microphone
      micMin = min(micMin, micVal); // decreases micMin if micVal is less than it
      micMax = max(micMax, micVal); // increases micMax if micVal is more than it
      }
      else { // change values
      micReading = micMax – micMin; // calculates the average levels
      digitValue = map(micReading,0,775,0,100); // Maps micReading to a percentage
      noiseCounter = 0; // reset noise measuring loop variables
      micMax = 0;
      micMin = 1024;
      }
      }

      // SET BITS FOR RGB MATRIX TO DISPLAY NOISELEVEL
      if(mode == 5){ // setting of LEDs in accordance with noiselevel
      if(digitValue < 10) {
      digit0 = digit0; // all LED off
      row11 = row21 = row31 = B00000000; // MA A4 blue
      row12 = row22 = row32 = B11110000;
      row41 = B00001000; row42 = B11100000;
      }
      else if(digitValue < 16) {
      digit0 = digit0 | B10000000; // LED1 on
      row11 = row21 = row31 = B00000000; // MA A4-B4 blue
      row12 = row22 = row32 = B11110000;
      row41 = B00001100; row42 = B11100000;
      }
      else if(digitValue < 22) {
      digit0 = digit0 | B10000000; // LED1 on
      row11 = row21 = row31 = B00000000; // MA A4-C4 blue
      row12 = row22 = row32 = B11110000;
      row41 = B00001110; row42 = B11100000;
      }
      else if(digitValue < 28) {
      digit0 = digit0 | B10000000; // LED1 on
      row11 = row21 = row31 = B00000000; // MA A4-D4 blue
      row12 = row22 = row32 = B11110000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 34) {
      digit0 = digit0 | B11000000; // LED1,2 on
      row11 = row21 = B00000000; // MA A1-D1 blue, A3 green
      row12 = row22 = B11110000;
      row31 = B10000000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 40) {
      digit0 = digit0 | B11000000; // LED1,2 on
      row11 = row21 = B00000000; // MA A1-D1 blue, A3-B3 green
      row12 = row22 = B11110000;
      row31 = B11000000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 46) {
      digit0 = digit0 | B11000000; // LED1,2 on
      row11 = row21 = B00000000; // MA A1-D1 blue, A3-C3 green
      row12 = row22 = B11110000;
      row31 = B11100000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 52) {
      digit0 = digit0 | B11000000; // LED1,2 on
      row11 = row21 = B00000000; // MA A1-D1 blue, A3-D3 green
      row12 = row22 = B11110000;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 58) {
      digit0 = digit0 | B11100000; // LED1,2,3 on
      row11 = B00000000; row12 = B11110000; // MA A1-D1 blue, A3-D3 green, A2 yellow
      row21 = B10000000; row22 = B10111000;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 64) {
      digit0 = digit0 | B11100000; // LED1,2,3 on
      row11 = B00000000; row12 = B11110000; // MA A1-D1 blue, A3-D3 green, A2-B2 yellow
      row21 = B11000000; row22 = B10111100;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 70) {
      digit0 = digit0 | B11100000; // LED1,2,3 on
      row11 = B00000000; row12 = B11110000; // MA A1-D1 blue, A3-D3 green, A2-C2 yellow
      row21 = B11100000; row22 = B10111110;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 76) {
      digit0 = digit0 | B11100000; // LED1,2,3 on
      row11 = B00000000; row12 = B11110000; // MA A1-D1 blue, A3-D3 green, A2-D2 yellow
      row21 = B11110000; row22 = B10111111;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 82) {
      digit0 = digit0 | B11110000; // LED1,2,3,4 on
      row11 = B00000000; row12 = B01111000; // MA A1-D1 blue, A3-D3 green, A2-D2 yellow, A1 red
      row21 = B11110000; row22 = B10111111;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 86) {
      digit0 = digit0 | B11110000; // LED1,2,3,4 on
      row11 = B00000000; row12 = B01111100; // MA A1-D1 blue, A3-D3 green, A2-D2 yellow, A1-B1 red
      row21 = B11110000; row22 = B10111111;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue < 92) {
      digit0 = digit0 | B11110000; // LED1,2,3,4 on
      row11 = B00000000; row12 = B01111110; // MA A1-D1 blue, A3-D3 green, A2-D2 yellow, A1-C1 red
      row21 = B11110000; row22 = B10111111;
      row31 = B11110000; row32 = B11010000;
      row41 = B00001111; row42 = B11100000;
      }
      else if(digitValue >= 92) {
      digit0 = digit0 | B11110000; // LED1,2,3,4 on
      row11 = B00000000; // MA A1-D1 blue, A3-D3 green, A2-D2 yellow, A1-D1 red
      row21 = B11110000;
      row31 = B11110000;
      row41 = B00001111;
      if (now.second() % 2 == 0){ // MA all blinking per second
      row12 = B01111111;
      row22 = B10111111;
      row32 = B11010000;
      row42 = B11100000;
      } else {
      row12 = row22 = row32 = row42 = B11110000;
      }
      }
      }

      // PREPARE VALUES FOR DIGITS
      thousands = digitValue / 1000;
      hundreds = (digitValue%1000)/100;
      tens = (digitValue%100) / 10;
      ones = (digitValue%10);
      if(thousands == 0 && (mode != 1) && (mode != 2)){ // if no value for digit0 switch it off
      digit0 = digit0 | B00000001;
      }
      if(thousands == 0 && hundreds == 0 && mode != 1){ // if also no value for digit1 switch it off unless display of time (e.g. 00.01)
      digit1 = digit1 | B00000010;
      }

      // OUTPUT TO DIGITISER
      // SETTING DIGIT0
      if(mode == 4){
      digit0 ^= 1UL << 0; // switches state of digit0 (to on again, as it is supposed to be off)
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,letterL); // displays ‘L’ on digit0
      shiftOut(SERDI,CLKDI,LSBFIRST,digit0);
      digitalWrite(LATDI,HIGH);
      }else{
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,number[thousands]);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit0);
      digitalWrite(LATDI,HIGH);
      }
      delay(4);

      //SETTING DIGIT1
      if(mode == 1){
      decimalPoint = number[hundreds];
      if (now.second() % 2 == 0){ // decimal point should be inserted in digit1 as in mode4, but blinking per second
      decimalPoint &= ~(1UL << 3); // clears the 3rd bit (= the decimal point on)
      } else {
      decimalPoint |= 1UL << 3; // setting the 3rd bit (= the decimal point off)
      }
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,decimalPoint);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit1);
      digitalWrite(LATDI,HIGH);
      } else if(mode == 2){ // decimal point should be inserted in digit1
      decimalPoint = number[hundreds];
      decimalPoint &= ~(1UL << 3); // clears the 3rd bit (= the decimal point on)
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,decimalPoint);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit1);
      digitalWrite(LATDI,HIGH);
      } else {
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,number[hundreds]);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit1);
      digitalWrite(LATDI,HIGH);
      }
      delay(4);

      //SETTING DIGIT2
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,number[tens]);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit2);
      digitalWrite(LATDI,HIGH);
      delay(4);

      //SETTING DIGIT3
      if(mode == 2){ // setting digit3
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,letterC);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit3);
      digitalWrite(LATDI,HIGH);
      }else if(mode == 3){
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,letterH);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit3);
      digitalWrite(LATDI,HIGH);
      }else{ // regular setting of digit3
      digitalWrite(LATDI, LOW);
      shiftOut(SERDI,CLKDI,LSBFIRST,number[ones]);
      shiftOut(SERDI,CLKDI,LSBFIRST,digit3);
      digitalWrite(LATDI,HIGH);
      }
      delay(1);

      //SETTING MATRIX
      setMA();
      }

    • #6914

      Wow Peter, that’s some epic coding right there! It’s going to take me a bit to digest it all. If it works and it fits in the ATMega328P’s memory, then bravo!

      There are lots of ways to condense code, but it gets more unreadable the more you condense it. A lot of the nifty efficient coding is beyond my level of knowledge, to be honest. To make things neater, you could use separate sketches for each function and call those like you would a library.

      Here is a tutorial I found after a quick search (I haven’t followed it or looked at it in detail, but it seems to outline what I’m talking about). https://www.youtube.com/watch?v=2pxYEwaMtaI

      Apologies for the late reply. I’m getting ready for a trade show at the moment, so I’m building boards, designing backdrops, packing kits and sorting insurance (who knew buying from China and selling to America was so uninsurable…).

    • #7191

      Just got done making this and getting it programmed.  Another tip for some errors if you copy and paste from here.  Make sure minus(-) signs are removed and added back in.  Also make sure the decrement uses 2 minus(-) signs.  This will give a (;) error if you dont fix those.

       

      Thanks for this code.  If I get more enhancements I will post updates.

       

      Kevin

Viewing 2 reply threads
  • You must be logged in to reply to this topic.